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LE’ITER TO THE EDITOR 

Quantum particle in a hierarchical potential with tunnelling 
over arbitrarily large scales 

G Jona-Lasiniot, F MartinelliS and E Scoppolat 
Laboratoire de Physique ThCorique et Hautes Energies, 4 place Jussieu, Tour 16, ler &age, 
75230 Paris Cedex 05, France 

Received 9 May 1984 

Abstract. We introduce a notion of hierarchical potential by iterating a basic elementary 
geometric construction over an increasing sequence of length scales. We then show that 
a quantum particle in such a potential exhibits a subdiffusive behaviour characterised by 
( r 2 ) s  C(ln t ) 8  if the initial state is a normalised wavepacket superposition of states of 
sufficiently low energy. 

Diffusion of a quantum particle in complicated potentials has attracted considerable 
attention in recent years on the part of theoretical and mathematical physicists. The 
reason is that an understanding of this problem is believed to be important in connection 
with the more general question of the behaviour of disordered systems, in particular 
of the metal-insulator transition. This idea goes back to Anderson’s famous paper 
(1958) and in the last ten years has stimulated extended studies of the behaviour of 
quantum particles in quasi periodic and stochastic potentials. This subject turned out 
to be a difficult one and in spite of an impressive accumulation of results, the basic 
physical mechanisms underlying the diffusion of a quantum particle in these potentials 
are not as transparent as one would wish. There are cases where one may reasonably 
think that diffusion is essentially determined by the possibility of tunnelling through 
potential barriers over arbitrarily large length scales. This point of view has been 
developed systematically by Frolich and Spencer (1983) in their study of the Anderson 
model where they show that tunnelling over large distances is very unlikely& a 
probabilistic sense. As a consequence they prove that liml+.m((r2)/t) = 0 where (r’) is 
the squared distance of the particle averaged ovec the  wavefunction and the 
potential. They also argue that the stronger result (rZ)cconstant should hold in 
their situation. 

Tunnelling is a very subtle phenomenon already at the deterministic level. In 
previous work (Jana-Lasinio et al 1981a, b) we have shown that tunnelling, even when 
energetically possible in the sense that the potential has many absolute minima (e.g. 
a periodic function), can be very unstable under small perturbations localised away 
from the minima. This result adds further evidence to the fact that tunnelling over 
large distances is a rather exceptional situation. In view of all this, it is of interest to 
investigate in more detail the relationship between tunnelling and diffusion by consider- 
ing simplified models where the calculation can be pushed to the end. In this paper 
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we construct a class of potentials which exhibit a geometrical hierarchical structure 
where tunnelling is energetically possible over all scales but diffusion does not take 
place at low energies even in cases where there are delocalised states. In these models, 
even if tunnelling is effective over large distances, the scarcity of low energy levels 
allows only a subdiffusive behaviour such that ( r z ) S  c(ln t ) p  if the average is taken 
with respect to wavepackets superposition of states of sufficiently low energy. For 
certain special models is it reasonable to expect also a lower bound of the same kind 
- at least in one dimension. When stochasticity is introduced we get the expected result 
( rz )  s constant. 

An interesting aspect of the models proposed is that they represent a natural domain 
of application of the techniques developed by Frolich and Spencer, providing thereby 
an explicit illustration of their effectiveness. 

For simplicity we begin by describing a very special example which besides being 
hierarchical has also symmetries. Let do = e$, ko > 0, and set dk = d,"k, U > 1. In what 
follows the numbers { d k } 7  play the role of length scales characteristic of the models. 
Let Ak be the cube centred at the origin of side 6dk with its faces parallel to the 
coordinate axes. We also denote by A;, k = 1, 2 , .  . . , 2 d  the cubes obtained by 
translating Ak along the positive and negative directions of the coordinate axes until 
it reaches the boundary of the cube (see figure 1). By construction dist (A;, A t )  > 
2dk+l if (Y # B. We also set A i  = Ak. 

Figure 1. 

We now define inductively the potential V ( x ) :  
(i) V ( x )  = 0, x E Ao; 
(ii) V ( x )  = A > 0, x E Ak+l \  U 2pdE0AZ ; 
(iii) V ( x )  in A: is the same as in A i .  

The constant A has to be sufficiently large so that the spectrum in the box A. with 
Dirichlet boundary conditions contains levels below A. 
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This model has some special symmetries which are not essential for the main result 
of this paper. In particular the only important feature is that inside a box Ak, the 
subregions where the potential can take the value V(x) = 0 have diameter of 
order d k - 1  and are separated one from the other by a distance of order dk In a 
subsequent paper we shall define a general class of models for which our result applies. 
The main features of these models are the following. There may be resonances over 
all scales d k  in the sense that all the boxes AY, 1 C k contained in a region Ak, k = 1, 
2, .  . . may have arbitrarily close eigenvalues below A when we isolate them one from 
the other with Dirichlet conditions on their boundary. In the specific model described 
above they actually have the same spectrum. In these conditions tunnelling is in 
principle possible over all length scales with the effect of producing delocalised states. 

We consider a wavepacket 4 constructed in the following way. We take a function 
$(x) well localised near the origin and the operator g ( H )  where g is a positive function 
with supp g c [a,, a 2 ] c  [0, A )  and H is the Hamiltonian. Our wavepacket is 4 = 
g ( H ) $ .  In words it contains only energies between al  and a2. The quantity 

( r 2 )  = j dxl(e-iH'$)(x)12x2 ( 1 )  

is then well defined for any t 2 0. Our main result is that for the models described above 

( r2)  s c(ln t ) P ,  p > o ,  c >  1. (2) 
We give here an outline of the proof. The details will be given in a subsequent paper 
of more mathematical character. Using the spectral theorem we can rewrite (1) in the 
form 

We choose the contour r as in figure 2, that is in such a way that the imaginary part 
shrinks as I /? .  

Figure 2. 

Consider now a distance d k ( ' ) + ,  such that k ( t  is the smallest integer for which 

exp(-Jdkcl,) s 1/  t. (4) 

(In r)2a s d k ( r ) + l  s (In rl2.'. 
That is, using the definition of the scales dk, 

(4') 

We now observe that with our choice of r and considering the special geometry of 
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the models, the conditions on the exponential decay of the Green function ( H  - z)-I 
(x, y )  proved by Frolich and Spencer are automatically satisfied on the scale dk(r )+ l  
if we choose as they do a = f .  We remark here that although they prove their result 
in Zd, it extends to the continuous case as shown in Holden and Martinelli (1984). 

We then split the integral in (3)  in two parts: one outside a sphere of radius d k ( r ) + l  
which can be bounded by a constant uniformly in t in view of the exponential decay 
of ( H - Z ) - l ( x , y ) ,  and one inside the sphere which can be bounded by d2k(r)+l. We 
have therefore 

( r z ) Q  Q c(ln t14.’. ( 5 )  

In addition to the motivations explained in the introdction we think the models 
constructed to be of interest in view of the scarcity of examples where such subdiffusive 
behaviour can be demonstrated. A notable exception is Sinai’s result (1982) on the 
one-dimensional random walk in a random environment where r - In2?. 

There are a number of additional results that can be proved on the structure of the 
spectrum below A for the specific model described earlier. For example it is possible 
to prove that the Lebesgue measure of the spectrum is zero and that there are no 
isolated eigenvalues of finite multiplicity. There is also strong evidence for the existence 
of delocalised states. 

Above A the model exhibits almost free evolution for suitably constructed 
wavepackets. 

If we introduce a stochasticity by letting the bottoms of the wells fluctuate randomly 
and independently or by keeping the minima of the potential fixed and deforming 
randomly the shape of the wells, we obtain that all the states of energy below A are 
exponentially localised. Furthermore (r’)  s constant. 

As a final remark we would like to emphasise that our conditions of hierarchicity 
are purely geometrical. Therefore our models could be in principle physically realised. 
In particular one could conceive of a superlattice (see e.g. Linh 1983) in which the 
thickness of the layers is arranged in such a way that the hierarchicity conditions are 
satisfied. 
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like to thank all these institutions for thier kind hospitality and financial support. 
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